Increased Precursor Cell Proliferation after Deep Brain Stimulation for Parkinson's Disease: A Human Study
نویسندگان
چکیده
OBJECTIVE Deep brain stimulation (DBS) has been used for more than a decade to treat Parkinson's disease (PD); however, its mechanism of action remains unknown. Given the close proximity of the electrode trajectory to areas of the brain known as the "germinal niches," we sought to explore the possibility that DBS influences neural stem cell proliferation locally, as well as more distantly. METHODS We studied the brains of a total of 12 idiopathic Parkinson's disease patients that were treated with DBS (the electrode placement occurred 0.5-6 years before death), and who subsequently died of unrelated illnesses. These were compared to the brains of 10 control individuals without CNS disease, and those of 5 PD patients with no DBS. RESULTS Immunohistochemical analyses of the subventricular zone (SVZ) of the lateral ventricles, the third ventricle lining, and the tissue surrounding the DBS lead revealed significantly greater numbers of proliferating cells expressing markers of the cell cycle, plasticity, and neural precursor cells in PD-DBS tissue compared with both normal brain tissue and tissue from PD patients not treated with DBS. The level of cell proliferation in the SVZ in PD-DBS brains was 2-6 fold greater than that in normal and untreated PD brains. CONCLUSIONS Our data suggest that DBS is capable of increasing cellular plasticity in the brain, and we hypothesize that it may have more widespread effects beyond the electrode location. It is unclear whether these effects of DBS have any symptomatic or other beneficial influences on PD.
منابع مشابه
Closed- and Open-loop Deep Brain Stimulation: Methods, Challenges, Current and Future Aspects
Deep brain stimulation (DBS) is known as the most effective technique in the treatment of neurodegenerative diseases, especially Parkinson disease (PD) and epilepsy. Relative healing and effective control of disease symptoms are the most significant reasons for the tangible tendency in use and development of this technology. Nevertheless, more cellular and molecular investigations are required ...
متن کاملControl of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملAnatomical situation of the subthalamic nucleus (STN) from midcommissural point (MCP) in Parkinson\'s disease patients underwent deep brain stimulation (DBS): an MRI targeting study
Abstract Introduction: It is demonstrated that the degree of clinical improvement in Parkinson's disease (PD) achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. In addition, individual variability in the situation of subthalamic nucleus (STN) is responsible for spatial inter-individual fluctuations of the real patient's target. Objecti...
متن کاملThe effect of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on the acoustic and prosodic features in patients with Parkinson’s disease: A study protocol for the first trial on Iranian patients
Background: The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on the voice features in Parkinson’s disease (PD) is controversial. No study has evaluated the voice features of PD underwent STN-DBS by the acoustic, perceptual, and patient-based assessments comprehensively. Furthermore, there is no study to investigate prosodic features before and after DBS in PD. The curren...
متن کاملTissue Response to Deep Brain Stimulation and Microlesion: A Comparative Study
OBJECTIVES Deep brain stimulation (DBS) is used for a variety of movement disorders, including Parkinson's disease. There are several theories regarding the biology and mechanisms of action of DBS. Previously, we observed an up-regulation of neural progenitor cell proliferation in post-mortem tissue suggesting that DBS can influence cellular plasticity in regions beyond the site of stimulation....
متن کامل